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J .  Phys. A. Math. Gen. 26 (1993) 5413-5425. Rinted in the UK 

Which deformations of the Poincark group? 
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France 

Received 22 March 1593 

Dedicated to Eugene P Wignet 

Abstrad. We analyse the present status of Poincar6 group in considering it as a 
fundamental object independent of the Minkowski space. We examine the observables 
associated with it. After having introduced the notion of kinematical observable, we 
derive the class of 'deform& Poincar6 group which are compatible with physics. 

1. Introduction 

The present article is, in a way, the modern version of an earlier one, entitled Possible 
Kinematics (PK), and written 25 years ago [l]. It is modern in that the group 
theoretical .point of view is replaced by an algebraic one. The motivation was the 
same: finding substitutes for the Poincar6 group. However, the present point of view 
is different from the previous one. In the old work, it was thought that the Poincar6 
group was responsible for the difficulties of special relativity in particle physics. Since 
it was realized [2] that it is our notion of space (and space-time) which is not suitable 
for microphysics$, the Poincar6 group cannot be brought into question, except 
perhaps at very high enerpies. 

It is not necessary to explain in detail the difficulties contained in classical and 
quantum special relativity. The interested reader will find information in previous 
papers [2,4,5-lo]. However, the present paper is self-contained. It could be entitled 
New Possible Kinematics because, in contradistincfion to PK, which Ied its authors to a 
classification of alreudy known kinematics (de Sitter, Poincar6, Galilei) together with 
some funny approximations as the so-called Carroll kinematics, the present paper 
proposes essentially a large continuous family of physicully acceptable new kinematics, 
among which we find the Poincar.5 kinematics. The continuity character of this family 
must be opposed to the group deformations and group contractions involved in PK, 
which are drastic altematives of the Poincark kinematics. 

The word &formution which appears in the title is already known in the theory of 
quantum groups to denote a family of Hopf algebras labelled by a parameter q. For 
q=O, the Hopf algebra coincides with the enveloping algebra of a simple (or 
semi-simple) Lie group. Since the Poincar6 group is not semi-simple, it is necessary to 
find another way to deform it. Three ways have been proposed up to now. One of 
t Also: Universite d'Aix-Marseille U, France. 
# A  point which has been underlined by Einstein [3] and Schwinger [4], among other ghysicists. 
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them consists in quantizing space-time [ll, 121. Unfortunately, there is no physical 
reason to choose a quantum Minkowski space which forces us to reject the isotropy of 
space together with the standard addition of angular momenta. The same criticism can 
be made against the q-deformation obtained from a matrix representation of the 
Poincart? group [13]. An interesting proposal was based on a q-deformation of the 
complex de Sitter group followed by a contraction [14-161. Not only this method 
provides us with an interpretation of the q parameter as a natural unit length but it 
leaves the rotation subgroup unchanged. Among the possible deformations, Liukerski 
et al. [I71 selected one of the deformations they arrived at and studied some of its 
physical consequences. Other physical investigations followed [1&22]. 

In the present article, the word deformation will be given a physical signification. 
The deformation concerns the Poincart? group alone; it means that it does not involve 
the Minkowski spacetime. A direct connection is established with the aid of the 
observables which appear in its representations. Field theory is ignored. 

The paper has seven sections. Section 2 describes the accepted status of the 
Poincart? group. Section 3 proposes a new status based on a new notion, namely the 
one of kinematical obseroablet. In this description, the group structure is introduced 
at the end. It is in releasing this group condition that we are able to derive, in section 
4, a physical set of possible deformations of the Poincart? kinematics. The interesting 
point is that the algebras obtained in this way from a family parametrized by a real 
number and a function. The Poincart? group belongs to it, the Lukierski-Nowicki- 
Ruegg quantum Poincart? algebra [15], tooS. The deformed Casiirs are given in 
section 5. Another section is devoted to the position observable. In the last one, we 
make some comments and state conclusions. 

2. The old and present status of the Poinear6 group 

It is useful to give, in a new manner, a brief report about the difficulties of special 
relativity in classical and quantum physics, starting with a few remarks about the 
ordinary quantization procedure, the one described in all elementary textbooks on 
quantum mechanics. Quantization is known, in particular, to be a nice trick for 
introducing the main quantum observables for a spinless massiue particle, position and 
momentum, together with their commutation relations. As is well known, we only 
have to replace the standard Poisson brackets by commutators. Although this 
procedure was defined for a spinless relativistic particle, its validity was readily 
accepted for a relativistic spinless massive particle. Concerning spinning massiue and 
massless particles, this quantization method is powerless. 

The famous work of Wiper  on unitary irreducible representations of the Poincart? 
group [23] provides us with some quantum observables for all kinds of particles, 
including the massless and the spinning ones. However, there were difficulties in this 
nice scheme to obtain a correct position observable. The famous Newton-Wigner 
operator 1241 for a spinning particle was suffering many defects. In particular, it does 
not fit with Minkowski space in that if a particle is localized for an observer, it is not 
localized for another one. In other words, it is impossible to associate a covariant 
position in space-time with a localized particle. We give, in table 1 a r6sumd of the 

+This notion is, in a way, a consequence of what I called the de Broglie symmetry principle [4,9], It was 
implicitly uxd in [lo]. 
*It is the work which is at the origin of the present paper. 
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Table 1. Observables furnished by the quantization procedure and by the P o i n M  group 
Wigner approach. 

Particles Quanrization Poincark group 

Spinning massive X,  P (S?) P, S (X?) 
Spinning massless ??? P, ’I (E??) 

ability of the two procedures we are spaking about in furnishing kinematical observ- 
ables. In this table, the letters X, P, S, q denote the position, the momentum, the 
spin, and the helicity operators, respectively. The interrogation mark is for an 
unsatisfactory observable, with three interrogation marks in the case where the 
observable does mf exist. 

In 1966, the author found this situation very unsatisfactory and thought that we 
had to combine in some way both the quantization and the Poincark group methods. It 
was found that classical spinning massive particles could be defined from the Poincark 
group itself [25,26]. This idea was investigated extensively by J-M. Souriau [U, 281. 
Although proud to have introuced the eight-dimensional phase space for such 
particlest, the impossibility of defining such a phase space for the photon or the 
neutrino was disappointing. This difficulty was common to the usual classical and 
quantum mechanical interpretations of the Poincar6 group, namely the impossibility 
of deriving an acceptable position observable. Then, after 1966, the situation was as 
described in table 2. 

From this table, one sees that the non-existence of a position observable for the 
photon is not purely quantum mechanical. It seems to be attached to the Poincark 
group itself$. In fact, we must underline that the problem of localized states is not 
directly related to .the Poincari group, but to its representations. 

If we examine carefully the role of the Poincar6 group in physics textbooks, we see 
that it is always defined from Minkowski space-time or Maxwell’s equations but its 
successes are related to the conservation and additivity of momenta. Even historically, 
special relativity was recognized as a valid theory because the successes of the 
formulas 

mu 
(1 -B’)”’ E = mc2 and p = 

better summarized by 

E2--p2c2=m2c4andv=- P 
E‘ 

Table 2. Observables furnished by the Poincare group approach in ’classical’ and quantum 
physia. 

Particles ‘Classical‘ Quantum 

Spinning massive P, S (X?) P, S (E) 
Spinning massless P, 7 (E??) P, q (E??)) 

tlt is one of the canonical symplectic manifolds of the Poincark group (a sphere bundle with the six- 
dimensional ordinary phase space as a base). 
$This is the reason for looking for substitutes for the Poincark group [l, 291. 
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It is interesting to underline that the way Einstein used to show with the aid of light 
signals, how to measure distances, was purely macroscopic and cannot give any 
support to a Minkowski space made of points [3,4,8]. 

The Poincark group is ten-dimensional and its 'ten' momenta are, by definition, 
the generators of the group, namely the angular momentum J ,  the linear momentum 
P, the energy Po, and a momentum which has no name, which corresponds to the 
boosts. We will call this last momentum the pseudo-angular momentum K .  

The momenta have the following properties in a given unitary representation: 
(1) Only J is an observable (three self-adjoint operators). The momentag, P, and 

Po are represented by unbounded operators, but they will be also referred to as 
observables. 

(2) If the representation describes an isolated system, the momenta (and the 
symmetrized functions of them) are conserved observables. This language implies that 
we are working in the Heisenberg picture, that is each momentum Mi is considered at 
time zero, which means that we have to replace, to be precise, Mi by Mi(0). Because 
Po is the generator of time translations, we have 

It is easy to check that J ,  P, and Po, because they commute with Po, obey 

With the pseudo-angular momentum K, because 

the conservation law is more subtle; we get 

Mi(t) = exp(itPo) Mi(0)  exp( - itPo). (1) 

J(t) = J(0) P(t) =P(O) PO(0 = ~o(0). (2) 

[Ki(0), P0(0)1= if',@) (3) 

K(t)=exp(itPo)K(0) exp(-irPo) =K(O) +tP(O). (4) 
We check that all commutation relations at time ta re  the same as the ones at time 
zero. In particular 

The conservation of the pseudo-angular momentum at time zero follows 
IK&)* PO(t)l =ip i ( t ) .  (5) 

d a 
-K(o)=-(K(~) -tPo(t))+i(Po(r),K(t) -tPo(r)l dt  a t  

(6)  = - Po(t) + Po(t) = 0. 

where X is the position operatort. It follows that the conservation of Po(t) = Po(0) and 
that of K(0)  = K(t )  - tP(t) are associated with the conservation of the initial position. 

(3) The momenta are additive. The additivity of momenta concerns composite non- 
interacting systems. In conhadistinction to conservation, this property characterizes 
momenta. If an isokated system is composed of two non-interacting systems described 
by the Hilbert spaces H(') and Hn, the global system is described by the tensor 
product of the Hilbert spaces and the total momentum Mi is the operator 

Mi = M ~ ' ) ~ I d ( * ) ~ I d ( ' ) ~ M ~ ~ .  (8) 
t We check that this formula, together with [X,(O), P,(O)] = id, and Po- (P'+ mZ)'lz (representation of mass 
m). is wmpatible with the commutation relations of the Lie algebra. 
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We have to keep in mind these three properties in order to propose a rigorous status 
of the Poincar6 group, not from a group theoretical point of view but from a quantum 
physical one. 

3. A new status for the Poincar6 group 

Let us 6rst make two remarks. First, in quantum physics, we are officially concerned 
with Hilbert spaces, observables (self-adjoint operators) and canonical transforma- 
tions (unitary operators). Nevertheless, we used to refer to the momentum operator 
without saying which system we are interested in. In other words, we speak about an 
observable before introducing any Hilbert space. Second, physicists used to dis- 
tinguish between kinematical group [l, 291 and dynamical groups. As far as quantum 
mechanics is involved, there is a difference between these two kinds of groups. A 
kinematical group (the Poincar6 group or the Galilei group) is introduced before its 
representations in contradivtinction to a dynamical group which is defined as a group 
of unitary transformations, that is in a given representation. In a sense, a kinematical 
group is an a priori group, for which observables could be defined abstractly without 
referring to self-adjoint operators. That is why we are tempted to introduce a new 
notion, namely the one of kinemica1 observables. Such a notion is associated with a 
kinematical group without referring to any of its representations. 

Another remark is needed. In the standard interpretation of the Poincar6 kinema- 
tics, we can distinguish between three kinds of observables. 

(1) The momenta which have a name independent of the representation. 
(2) The momenta without name. 
(3) The observables which are defined in ‘a given representation (spin, 

Newton-Wigner position) 
This dissymmetry between observables associated with a kinematical group is not 
satisfactory. In particular, as we saw earlier, the position observable has a status 
depending on the representation. That is why we propose to change the status of the 
Poincark group with the aid of the following definitions, in which the group structure 
assumption is put at the end. 

Axiom 1.  There is an object, called the ‘kinematical group’, which characterizes the 
most general isolated system. 

Axiom 2. We associate with the general isolated system ten kinematical obseroables 
called momenta. They are: 

the angular momentum J 
the quasi-angular momentum K 
the linear momentum P 
the energy Po. 

Let us denote by 94 the free algebra generated by these ten kinematical observ- 
ables. The algebra 94 has a unit denoted 1. 

Axiom 3. To each momentum Mi corresponds a continuous set of elements of 94 called 
elemeruary kinematical elements. This set is defined by the expression exp(-irpM,). 
We must insist on the fact that, up to now, we introduced none Hilbert space. 
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Axiom 4. We want to make an elementary kinematical element acting on an arbitrary 
momentum M i .  For that purpose, we d e h e  a mapping p from A x A to Se such that 

AM, M,) = -AM?, MJ E (9) 

p(a, b ) = - A b , a )  (10) 
p (a. p ( b .  4 )  + P ( b ,  P (ck, 0 ) )  + P (cy  f i  (a. 6 ) )  = 0 ( 1 1 )  

p ( a + b , c )  =p(a,C)+pc(b,c) (12) 

p(ab,c)=ap(b,c)+~c(a,c)b. (13) 

and extend this function to @Sa to Se in imposing the relations 

This mapping permits definition'of a quotient algebra Se,, with the aid of the 
equivalence relation 

ub-ba-p(a,  6 )  (14) 
The algebra is given a *-algebra structure in requiring that the momenta obey 
My= M,. An element of Sa,, is, by definition, a kinematical observable if it is Hermitian 
@=a*). 

With the aid of this new algebra, every elementary kinematical element 
exp(-i@Mi) acts as follows on the momentum &I, 

Ml-+exp(-i@Mj)Mjexp(i@Mj)=Mi-i@[Mi, M i ] - y [ M i ,  [M,, M i ] ] + .  . I 

where [Mi ,  M I ]  is put forp(M;, Mi). 
A kinematical transformation is, by delinition, a product of elementary kinemati- 

cal elements of Sa,,. The kinematical transformations are products of elementary 
transformations. 

The kinematical transformations form a group called the kinematical group. Up to 
now, it is not necessarily a Lie group. 
Axiom 5. Since the kinematical group describes the most general isolated system and 
that the union of two isolated systems is also an isolated system, there must exist a' 
commutative coproduct A in Se,,. This coproduct must preserve the equivalence 
relation (14). This is equivalent to impose that Sa,, must be a bi-algebra. 
Axiom 6. A kinematical transformation maps a momentum on a linear combination of 
momenta. In that case, the kinematical group is a ten-dimensional Lie group and the 
algebra Se,, is nothing else than its enveloping Lie algebra. Moreover, we know that Sa,, 
is a bi-algebra with A being the mapping 

(15)  
@z 

A: Mi+(MI@l)@(l@Mi). (16) 

S: M p M , .  (17) 

We also know that Se,, is a Hopf algebra with the antipode S defied as the mapping 

Axiom 7. The last axiom is trivial: the kinematical group is isomorphic to the Poincart! 
group. 

Our way of defining the Poincar6 group is rather strange. The reader would prefer 
to introduce the enveloping algebra of the Poincart! group as the set of kinematical 
observables. Nevertheless, our definition is needed in order to replace the Poincare 
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group by aphysically meaningful quantum group. This is obtained in replacing axioms 
6 and 7 by suitable ones. In this scheme, the algebra dp becomes the deformed 
enveloping algebra and the kinematical group becomes a deformed Poincark group 
(generally, an infinite-dimensional group). 

One of the most important axioms is the fifth one, where the notion of kinematical 
observable is introduced. It is worthwhile to underlie the following fact: if we require 
the position to be also a kinematical observable, we are immediately led to adopt, for 
the Poincari group, the definition 

that is the one proposed in [6].  

4. Deformations of the Poneare group 

The deformations we are going to consider are based on the five first axioms of section 
3 and the following assumptions. 

Assumption 1.  The momenta J ,  K, and P are vectors and the energy Po is a scalar. This 
means that we have the following commutation relations 

[Ji, .Ti] = i.siiJk (C1) 

[ J i ,  P,] =i.siikPx (C2) 

[J,, IC,] =iEiikKX (C3) 
[J i ,  PoI=O (C4) 

Assumption 2,  In order to preserve the existence of a relationship between momen- 
tum, energy and mass, we impose 

[Pi, Pi] = 0 (C5) 

IPo,P,I=O (C6) 
We note that the relations (Cl), (a), (a), (C5), and (a) define the Lie algebra of 
the Aristotle group?., 

Assumpfion 3. Now, we require that a boost in the direction i modifies the energy and 
the Pi component of the momentum. This means that the boosts act-not necessarily 
linearly-on the energy-momentum space. 

[Ki ,  Po] = ia(Po)Pi (U) 

[Ki, Pi1 =iB(P& (a) 

~ I ~ i ~ ~ i l ~ ~ j l + ~ ~ ~ i ~ ~ j l ~ i I + ~ ~ ~ ~ ~ ~ i l ~ i 1 ~ ~  

where a a n d g  are two functions to be determined$. The Jacobi relation, for i# j  

t This group is a seven-dimensional subgroup of the Poincark group and the Galilei group. The referenm to 
Aristotle is due to Souriau. 
t It can be shown that the assumption 3 auld be replaced by the unique condition that there exists a 
function @(Po) such that #(Po) -Pz is an invariant observable. 
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together with (a), (O), and (C8) imposes condition (C6). This proves that 
assumptions 2 and 3 are not independent. 

The Jacobi relation 

[ [K i ,K j l ,Pk l+[ [K j ,PkIK~]+[ [P , ,k ; l ,  Kj1=0 
together with (C8) gives 

[ [ K ,  41, P,l= 0 for i f  j #  k # i (19) 
K,L Kill= -ia(Po)B'(PAPj fori#j 

Since the commutator [Ki,  41 is antisymmetric, it is necessarily of the form c,,~V,, 
where V is a vector. This property comes from the well-known rule of angular 
momenta addition: Dl@Dl= D,,@D1@D2. The representations Do and D2 (resp. Q) 
belong to the symmetric (resp. antisymmetric) part of the product. Among the three 
vectors we have (I, K,  P ) ,  only two may be involved, namely I and P .  This is due to 
the fact that the Jacobi relation 

[ [K;: ,  Kjl, POI + [[Kip POI, Ki1+ [[Po, KiI, Kjl = O  

[IKi, K,1, Pol = 0 

implies 

(20) 
If we set 

[K,,  41 = ieiik(yJk - dP,)  
the conditions (19) and (20) give 

Finally, the Jacobi relation 

W i ,  41 ,  Kkl + w,, & I ,  a+ [[&e K,I.K,l =o 

~ ( P o ) ~ B " ( P o )  + a(Po)a'(PolB'(Po) -B(Po)g(Pd - a(Po)g'(Po)P2 = 0. 

imposes the condition 

Our point of view imposes that this relation is independent of the representation. 
Therefore, the last term, the one involving P2,  must vanish independently. It follows 
that g'(Po) vanishes, that is g(Po) is a constant. We denote this constant by g. 

The functions a and ,3 and the constant g obey the relation 
d 

a(Po) ~ ( ~ ( P o ) B ' ( P o ) ) - - ~ B ( P o ) = O .  (21) 

As a rdsum6, we have the following commutators for the deformed Poincard group 

[J,,J,l=iEvkJk (C1) 

P ' 9  P , l = i 4 , k P k  (a) 
[J,, K,1= ie,,& (C3) 
[J,,PoI=O (C4) 

[Po Pi1 = 0 (C5) 
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[Po, Pi1 = 0 
[ Ki, Po] = ia(Po)Pi 
[&, Pi]=ij3(P06, 

[ K i ,  K,] = - isiik a(P&Wo)Jk - (C9) ( 
where the fundions a, 8, and the constant g obey equation (21). 
Remnrk. To be called a deformation of the Poincark group, we must require the 
conditions a(Po) - 1 and j3(Po) - Po for small values of Po. We note that the conditions 
a(Po)-0 and p(Po)-constant would correspond to a deformation of the Galilei 
group. 

We now give a simpler description of the deformations of the Poincare group. For 
this purpose, we introduce the following function 

Po du 1 
a(Po)=- f' (PO)' 

If we replace the variable Po by v=f(Po),  we get, instead of (21) 

which gives, for gZ0, solutions of the type 

8PO) =A eXp(Gf(P0)) + B eXP(-Gf(Po)). 
The fact that j3 is equivalent to Po implies that we have 

Consequently 

a(PdB'(Pd = cpSh(Gf(P0)). 
As a conclusion, the three equations involved in the deformations can be replaced by 

1 
[K; ,  P ] - i - - f ' ( P p  

[K,, K,1= - k , k  ( cosh(Gf(Po))J,-4(J.P)Pk g ,  (C9') 

with 
f(Po) -Po, for small values of Po. 

In this form, we see that the Poincar6 kinematics corresponds to f (Po)=Po and 
g=O. In the case where f (Po)=Po  and g>O, one obtains the 
Lukierski-Novicki-Ruegg K-deformed Poincare algebra? (K is defined by g= l / ~ * ) .  

?The LNR algebra here is just the associative algebra, not the Hopf algebra. 
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5.  The deformed Pauli-Lubanski fonr-vector and the deformed Caslmirs 

We define the deformed Pauli-Lubanski vectors as follows 

Wo=J.P 

The 'orthogonality' relation reads 

It is a simple matter to check that the two Casimirs are 

- P f  c o s h ( 4 f  (Po)) - 1 
g 

c , = 2  

c,= cosh(Gf(Po))-qPf w",- Wf. ( g ,  

6. The problem of the position observable 

The fact that the Euclidean group is part of our deformed Poincare group has the 
advantage to introduce another kinematical observable which will be called the 
kinematicnl spin angular momentum. Such a definition is in no way related to a 
transformation. That is why we cannot require any rotation commutation relation 
before specibing the representation we are interested in. We only require that this 
kinematical observable coincides with the usual spin angular momentum for massive 
particles. Its definition is obtained in a way similar to the one given by Mackey [30]. 
Suppose that we are able to d e h e  the position observable X, that is three observables 
X,  obeying 

[K., P,] = isij 
the kinematical observables Zj= J j -  E , ,~X,P~ obey 

[E,, =G+ iW1,  X21& + [X2, X 3 P l  + [%, X,IPdP3 (31) 
and we verify that: 

0 in a representation corresponding to a spinless massive particle, the condition 
[Xi, Xi] = 0 is compatible with the condition E = 0; 
in a representation corresponding to a spinning massive particle, when P = 0, the 
Xis coincide with the spin components S, and obey the standard commutations 
relations 

[Si, Si] =iq& (32) 
However, we must underline that it does not follow that the kinematical variables E, 
obey the standard Lie algebra commutation relations. 
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We are left with the problem of the existence of a position observable satisfying 
our two requirements. It is a simple matter to check that the following definition is 
acceptable: 

We note that the requirement that Ki is self-adjoint imposes some symmetrization at 
the RHS. 

In the Galilei group, we have the relation K=mX. In the Poincark group, this 
relation becomes, for spinless massive particles K = & [ P o , X ] , .  Because here we are 
interested in the set of kinematical observables for an arbitrary isolated system, our 
choice must be independent of the representation. We note that (0) and (CS) force 
the function y of (33) to coincide with the function B .  Therefore we sett 

K = y(P0)X. (33) 

K = 1-[B (Po), X I +  (34) 
or, equivalently 

We obtain the following commutation relations 

[&Pi] = 0. (37) 
We verify easily that our definition implies that, for a spineless particle (with or 
without mass), the commutator [Xi, Xi] vanishes. 

Equation (26) becomes for the Poincark group 

and, for the LNR quantum group (with g= 1) 

(36') 

(36") 

7. Conclusions 

It is remarkable that the deformations we arrived at look Like those of [17], where the 
hyperbolic functions are involved in an analogous way. In this form, the LNR appears 
to be the simplest of the family. In fact, this i s  due to our choice of parametrization. If 
we adopt the first presentation, namely the one with the functions a and B ,  this 
solution has no privilege. In order to underlie that point, we give the first solutions of 
a special sequence, the one for which a(Po) = 1 -g P$nZ, with n = 1,2,3,  . . .. We get 

where h is an odd polynomial of degree 2n - 1. 

1 For the Poincare group, the additivity of boosts gives rise to the interpretation of the centre of energy. 
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We must underline the advantage of the Poincar6 group on its competitors: we are 
sure that the momenta are additive, i.e. the corresponding comultiplication is co- 
commutative. In particular, if an isolated system Y is composed of two non-interacting 
subsystems 9, and Y2,  we can say alternatively that it is composed of the system Y2 and 
Y,. There is no reason to believe that a commutative coproduct giving a bi-algebra 
structure to the general deformation cannot be found. From our definitions of the 
isolated system and the kinematical group, we are tempted to conjecture that it 
exists?. If it is not the case, we would have to interpret the kinematical obsemables 
attached to composite systems, a nontrivial problem which exists already for the NLR 
Hopf Poincak algebra. 
We note that the deformation can be chosen in such a way that Eq. (28) provides a 
natural cutoff for the momentum. For instance, in the LNR case, if we replace the 
constant lc by ilc, we get 

PO 
2w 

p2= 4x2 sin2- - mz 

and the fact that sinus cannot take a value larger obliges the momentum to be less than 
a given quantity. 
Our interpretation of Po as the generator of time translations forbids us to introduce a 
renormalization which would transform the function f into the-constant 1. Such a 
transformation would change the nature of the time axis. 
The introduction of the notion of kinematical observables is a better frame than the 
principle defined by the author under the name of de Broglie's symmetry principle 
according to which all particles must be put 'on the same foot' 191. It is clear that the 
kinematical observables put on the same foot all isolated systems, a statement more 
general than the one of elementary particles. our hope is that the position kinematical 
observable will help us to understand in a better way the notion of space. It seems that 
it is impossible to separate space, energy-momentum and spin [lo]. In the usual 
approach, classical space and momentum space are parts of the six-dimensional phase- 
space (spin is ignored). In quantum mechanics, this phase-space is replaced by a non- 
commutative space associated with a non-trivial irreducible representation of the 
enveloping algebra of the Heisenberg Lie algebra. With the notion of kinematical 
obserable, a notion which is independent of the system, we wuld say that the 
kinematical phase-space is directly related to the enveloping Lie algebra of the 
Heisenberg Lie algebra. If we want to have spin variables involved, we have to define 
the relativistic kinematical phase-space as a non-commutative space associated with 
the enveloping algebra YC of the Poincar6 Lie algebra. Finally, if physics needs instead 
of that another Hopf algebra for a new kinematical phase space, we have to know if 
this last Hopf algebra is isomorphic to YC or not. 

We must recall that, in principle, experimental arguments can be used to give 
some restrictions to the parameter g and the function f, in the same way suggested in 
[18-201. It is perhaps important to insist also on the fact that the ordinary Poincare 

t As a simple example of such an existence, take the Lie algebra defined by the bracket [x,y]=y; the 
wrresponding enveloping Lie algebra has a Hopf algebra structure which is w-commutative. Define the 
element I =sinhy (this function has a = G a r  inverse). It is easy to show that [x,z]=(l+rZsinb-'(r), a 
relation which defines a Hopf algebra which is obviously cocommutative. This example could be interpreted 
as an indication that one can wnstruct the m algebra in the enveloping algebra of the Poincar6 gmup 
itself. This would mean that the ordinary Poincar6 algebra possesses new interpretations. 
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group belongs to the family, but with a non-standard interpretation, due to the 
delinition of the position observable. However, the Poincark group suffers a defect: it 
does not furnish a natural unit of length. 

Acknowledgments 

It is a pleasure to thank professors A Connes, D Kastler, J Lukierski, and H Ruegg 
for fruitful discussions. 

References 

[l] Bacry H and Levy-Leblond I-M 1968 1. Mutk. Pkys. 9 1605 
[2] Bacry H 1989 Loculizability and Spuce in Qunntum Pkysics (Lechue Notes in Pkysics 108) (Berh:  

[3] Ti L 1991 Thermodynamicr: HLrtory und Philosophy ed K Martin&, L Ropolyi and P Szegedi 

141 Bacry H Some R@ections on the Euolution of Physical Theories Int. 1. Theor. Pkys. in press 
[5] Bacry H 1981 1. Pkys. A: Mdk. Gen. 14 L73 
[6] Bacry H 1988 Am. Inst. H. Poincurt 49 245 
[7] Bacry H 1969 Spuce-Time Symmem’es eds Y S Kun and W W Zachary (Amsterdam: North-Holland) 

[SI Bacry H 1990 A Conrrudiction in Specini Relm’uiry (unpublished) Preprint CPT Marseille 
191 Bacry H 1991 Lecnrre Notes in Physics 382 ed V V Dodonov and V I Man’ko (Berlin: Springer) 

Springer) 

(Singapore: World scientific) 1991 

pp 222-230 

pp 331-8 
[lo] Bacry H 1992 Ann. Inst. H Poinclve 56 345 
[ll] Schmidke W B, Wess I and Zumino B 1991 2. Pkys. C 52 471 1990 Nucl. Pkys. B 18 302 
1121 Ogiewetsky 0, Schmidke W B, Wess I and Zumino B 1992 Commun. Matk. Phys. 150 495 
1131 Schlieker M, Weich W and Weixler R 1992 2. Pkys. C 53 79 
1141 Lukierski I, Nowicki A, Ruegg H and Tolstoy V N 1991 Pkya. Len. 2MB 331 
[lS] Lukierski J, Nowicki A and Ruegg H 1991 Pkys. Lett. 271B 321 
[I61 Giller S, Kunz J, Kosinski P, Majewski M and Maslanka P 1992 Pkys. Len. 2868 57 
[17] Lukienki 1, Nowicki A and Ruegg H 1992 Pkys. Len. 2938 361 
[lS] Domokos G Astrophysical limits on the deformation of the Poincare group Preprint 

1191 Bacry H 1993 The problem of mass in the LNR quantum P o i n d  algebra Pkys. Len. 3068 41 
[ZO] Bacry H 1993 Classical electrodynamics on a quantum Poincare group Pkys. Len. 3068 44 
[Zl] Likierski I. Ruegg H and Riihl W From K-Poincare algebra to Lorenb quasigroup: a deformation of 

[ZZ] Nowicki A. Sorace E and Tarlini M The quantum deformed Dirac equation from the ~-Poin& 

[U] Wigner E P 1939 Annul. Murk. 40 149 (reprinted in 17) 
[?A] Newton R G and Wigner E P 1949 Reu. Mod. Pkys. 21 400 
[U] Bacry H 1966 Hamiltonian Formalism for Spin (unpublished) Preprin! U S  Princeton 
[26] Bacry H 1967 Commun. Mu&. Pkys. 5 97 
[27] Souriau J-M 1966 Acud. Sci. 263 81191 
[ZS] Souriau I-M 1970 S t m m  des SystemeS Dynamiques (Paris: Dunod) 
1291 Bacry H and N u p  1 1986 1. Math. Pkys. 27 2455 
(301 Mackey G W 1961 Cdioqlum Lectures to the American Matkemaricol Society (Srilwter, OL) 

JHU-TIF’AC92w27, Baltimore 

relativistic Symmetry Preprint KLTH-92/22, Kaiserslautem 

algebra Preprint DFF 177l12192, Florence 


